Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7987): 502-508, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968524

ABSTRACT

The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space1,2. Ultracold temperatures amplify quantum effects, whereas free fall allows further cooling and longer interactions time with gravity-the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensates (BECs), superfluidity, and strongly interacting quantum gases3. Terrestrial quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the universality of free fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 10-12 level4. In space, cooling the elements needed to explore the rich physics of strong interactions or perform quantum tests of the UFF has remained elusive. Here, using upgraded hardware of the multiuser Cold Atom Lab (CAL) instrument aboard the International Space Station (ISS), we report, to our knowledge, the first simultaneous production of a dual-species BEC in space (formed from 87Rb and 41K), observation of interspecies interactions, as well as the production of 39K ultracold gases. Operating a single laser at a 'magic wavelength' at which Rabi rates of simultaneously applied Bragg pulses are equal, we have further achieved the first spaceborne demonstration of simultaneous atom interferometry with two atomic species (87Rb and 41K). These results are an important step towards quantum tests of UFF in space and will allow scientists to investigate aspects of few-body physics, quantum chemistry and fundamental physics in new regimes without the perturbing asymmetry of gravity.

2.
Nature ; 584(7819): E1, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32678340

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 582(7811): 193-197, 2020 06.
Article in English | MEDLINE | ID: mdl-32528092

ABSTRACT

Quantum mechanics governs the microscopic world, where low mass and momentum reveal a natural wave-particle duality. Magnifying quantum behaviour to macroscopic scales is a major strength of the technique of cooling and trapping atomic gases, in which low momentum is engineered through extremely low temperatures. Advances in this field have achieved such precise control over atomic systems that gravity, often negligible when considering individual atoms, has emerged as a substantial obstacle. In particular, although weaker trapping fields would allow access to lower temperatures1,2, gravity empties atom traps that are too weak. Additionally, inertial sensors based on cold atoms could reach better sensitivities if the free-fall time of the atoms after release from the trap could be made longer3. Planetary orbit, specifically the condition of perpetual free-fall, offers to lift cold-atom studies beyond such terrestrial limitations. Here we report production of rubidium Bose-Einstein condensates (BECs) in an Earth-orbiting research laboratory, the Cold Atom Lab. We observe subnanokelvin BECs in weak trapping potentials with free-expansion times extending beyond one second, providing an initial demonstration of the advantages offered by a microgravity environment for cold-atom experiments and verifying the successful operation of this facility. With routine BEC production, continuing operations will support long-term investigations of trap topologies unique to microgravity4,5, atom-laser sources6, few-body physics7,8 and pathfinding techniques for atom-wave interferometry9-12.

4.
NPJ Microgravity ; 4: 16, 2018.
Article in English | MEDLINE | ID: mdl-30155516

ABSTRACT

We report the status of the Cold Atom Lab (CAL) instrument to be operated aboard the International Space Station (ISS). Utilizing a compact atom chip-based system to create ultracold mixtures and degenerate samples of 87Rb, 39K, and 41K, CAL is a multi-user facility developed by NASA's Jet Propulsion Laboratory to provide the first persistent quantum gas platform in the microgravity conditions of space. Within this unique environment, atom traps can be decompressed to arbitrarily weak confining potentials, producing a new regime of picokelvin temperatures and ultra-low densities. Further, the complete removal of these confining potential allows the free fall evolution of ultracold clouds to be observed on unprecedented timescales compared to earthbound instruments. This unique facility will enable novel ultracold atom research to be remotely performed by an international group of principle investigators with broad applications in fundamental physics and inertial sensing. Here, we describe the development and validation of critical CAL technologies, including demonstration of the first on-chip Bose-Einstein condensation (BEC) of 87Rb with microwave-based evaporation and the generation of ultracold dual-species quantum gas mixtures of 39K/87Rb and 41K/87Rb in an atom chip trap via sympathetic cooling.

5.
Opt Lett ; 38(3): 284-6, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23381412

ABSTRACT

We report the demonstration of whispering gallery mode (WGM) resonators augmented with diffraction gratings. We apply focused ion beam (FIB) methods to precisely engrave a surface grating directly into the perimeter of a crystalline disc. The grating provides a simple and highly directional free-space coupling mechanism with superior stability to evanescent coupling techniques. These integrated gratings can also provide control of the resonance spectrum, significantly reducing the mode density. Our FIB fabrication process does not introduce significant loss; Q≃3×10(7) has been demonstrated. The wavelength dependence of the diffraction angle was found to be in excellent agreement with grating theory. The versatility of spectral control and far-field grating coupling will have significant impact in WGM resonator applications in lasers, sensors, and optoelectronics.

6.
Opt Express ; 20(16): 18091-6, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-23038357

ABSTRACT

We report the realization of an open cavity whispering gallery mode optical resonator, in which the circulating light traverses a free space gap. We utilize focused ion beam microfabrication to precisely cut a 10 µm wide notch into the perimeter of a crystalline disc. We have shown that this modified resonator structure supports high quality modes, and demonstrated qualify factor, Q ~/= 10(6), limited by the notch surface roughness due to the ion milling process. Furthermore, we investigated the spatial profile of the modes inside the open cavity with a microfabricated probe mechanism. This new type of resonator structure facilitates interaction of the cavity's optical field with mechanical resonators as well as individual atoms or molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...